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Abstract

Bivariate thematic maps are powerful tools for understanding geographic phenomena, making visible 

spatial associations between them. But bivariate thematic maps are more visually complex than a 

univariate map, a source of frustration for both map creators and map readers. Despite a variety of 

visual solutions for bivariate mapping, there exists few 'best practices' for selecting or implementing 

an appropriate bivariate map type for a given scenario. This results in a need for empirical research 

examining the perceptual and functional differences among bivariate mapping solutions. 

This research reports on a controlled experiment informed by the theory of selective attention, a 

concept describing the human capacity to tune out unwanted stimuli, and attend specifically to the 

information desired. The goal of this research was to examine if and how the perceptual 

characteristics of bivariate map types impact the ability of map readers to extract information from 

different bivariate map types. 

55 participants completed a controlled experiment in which they had to answer close ended questions 

using bivariate maps. Accuracy and response time were recorded for each question. The experiment 

also opened with biographical questions to determine participant expertise and finished with a Likert-

based survey to determine participant preference of the different map types. 

The results of this experiment suggest that 1) despite longstanding hesitations regarding the utility of 

bivariate maps, participants were largely successful in extracting information from most if not all of the 

tested map types, and 2) the eight map types varied in terms of how intuitively participants were able 

to use the maps to answer the survey questions. While selective attention theory could explain some 

of these differences, the performance of the map types differed appreciably from similar studies that 

examined these map symbols in a more abstract, perception-focused setting. While the perceptual 

models of selective attention can still be useful in guiding map design, more work needs to be done in 

understanding the cognitive aspects and limitations to bivariate map reading.
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Chapter 1: Introduction

1.1 -  Symbol Types in Thematic Mapping

Thematic mapping, or maps that indicate the variation of one or several 

statistical attributes across space, is a primary topic of interest for both the science 

and practice of Cartography. The topic has been the emphasis of much of the 

twentieth century scientific investigation within Cartography (e.g., McMaster & 

McMaster, 2002; Montello, 2002) and a topic of discussion within numerous 

Cartography textbooks (e.g., Dent, Torguson, & Hodler  2009; Fisher, 1982; Krygier 

& Wood, 2011; Robinson, 1995; Slocum et al., 2003; Tyner, 2010). Thematic maps 

are now a familiar means of visualizing information, visible in newspapers, 

magazines, journal articles, and elsewhere (Monmonier, 1999).

The thematic map literature details the considerations and best practices 

regarding thematic map design; subjects like the appropriate choice of color 

schemes (Brewer, 1989; Brewer et al., 1997; Brewer & Olson, 1997), the means of 

assigning data into classes (Brewer & Pickle, 2002; Jenks & Caspall, 1971), and 

algorithms for perceptual scaling of proportional symbols (Brewer & Campbell, 1998; 

Flannery, 1971). Each of these studies deals with particular design decisions within 

a particular kind of map selected for representing a particular kind of geographic 

phenomenon. Comparatively less has been said about one of the most fundamental 
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choices a map designer must make: which style of symbolization to select for their 

map. For instance, choropleth, graduated symbol, isopleth, and dot density are 

common solutions for univariate maps and all can be used to represent the same 

numerical, enumerated information (MacEachren & DiBiase, 1991). In the following 

text, the term map types will be used to refer to competing forms of symbol styling 

that may be employed to represent geographic information, with discussion limited to 

the context of symbol types supporting thematic mapping.

There is a small, yet important set of contributions regarding the selection of 

map types for univariate thematic mapping. MacEachren & DiBiase (1991) prescribe 

the use of different common thematic map types according to the kind of geographic 

phenomenon to be represented, with the phenomenon varying across two axes: (1) 

continuity (discrete versus continuous phenomena) and (2) abruptness (abrupt 

versus smooth phenomenon). Additional guidelines are offered according to the 

dimensionality of the represented geographic phenomenon (e.g., point, line, area, 

volume) and its level of measurement (nominal, ordinal, or numerical) (MacEachren, 

1995).

Different map types also may vary according to their functional effectiveness 

for map reading (Robinson, 1995). For instance, in a study comparing different 

symbol types, MacEachren (1982a) found that isopleths are more effective than 

choropleths in providing the reader a sense of the larger spatial patterns in the 
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information (high level or 'General' map reading tasks, as will be fully described in 

Section 2.3). This necessitates research testing the comparative strengths and 

weaknesses of different map types, establishing which map type is best employed 

for common map use tasks in order to allow the map designer to make an informed 

solution for visualizing their information. The MacEachren comparative study also 

revealed nuances in such map type prescription; at least one map reading task was 

better supported by choropleth rather than isopleth maps (the recall of General 

spatial patterns in the information, but only when the maps had large numbers of 

classes). Thus, while there may be one overall 'winner', there likely are a variety of 

contextual constraints and influences that may promote one map type over the other 

given the user's task. Other comparative studies that exposed such nuances in map 

type selection include Johnson's (2008) user testing of different forms of cartograms 

and Nelson's (2000) bivariate map testing. Future work is still needed in testing map 

types to identify the subtle functional differences between map types.

1.2 – Bivariate and Multivariate Maps

Another major limitation in the existing thematic Cartography literature is that 

it primarily focuses on univariate maps, or cartographic representations that portray 

only one attribute of a geographic information set. Displaying two or more attributes 

(a bivariate and multivariate map, respectively) is a powerful way to convey 

information about associated geographic phenomena, but successfully designing 
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bivariate/multivariate maps is challenging due to the added density of information. To 

scope the problem, the following research will not address multivariate maps, and 

will consider bivariate maps only.

The functional purpose of a bivariate map is to show relationships among two 

geographic phenomena (Fisher, 1982; Tyner, 2010). Visualizing this geographic 

relationship frequently provides insight into understanding the mapped phenomena. 

When variables display an association over space, whether positive or negative, it 

suggests the phenomena have some influence on each other. Areas that do not 

reflect the larger-scale relationship between the variables can be identified; the fact 

that they 'buck the trend' suggests that there may be a confounding influence 

occurring in that region.

If enhanced understanding of a potentially related geographic phenomena is 

the benefit of bivariate mapping, comprehensibility is the cost. A bivariate map is, by 

its nature, more visually complex than a univariate map. Visual complexity, as 

defined by MacEachren (1982a; 1982b), describes the degree of intricacy created by 

the map elements. Visual complexity makes the map more difficult for the viewer to 

process mentally, and, if this complexity proves overwhelming, it can render the map 

valueless to the reader. Fisher (1982: 268) puts the bivariate map (or 'multi-subject' 

map, as he refers to it) in simple cost/benefit terms: there is "a limit beyond which 

the difficulty of comprehending two or more subjects exceeds the value of being able 

to relate them" and actually goes so far as to claim that multivariate mapping "is 
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desirable in very few circumstances." Similar sentiments are offered by Beard & 

Mackaness (1993) and McGranaghan (1993) in the context of uncertainty 

visualization (where the attribute and some measure of its uncertainty are 

represented together in a bivariate map). Importantly, several studies regarding 

bivariate maps have revealed a variation of effectiveness across the expertise of the 

map reader (e.g., Hope & Hunter, 2007; Kobus, Proctor, & Holste, 2001; Roth, 2009; 

see Section 2.4 for more details). The issue of visual complexity within bivariate 

mapping is directly related to the concept of selective attention.

1.3 – Selective Attention and Bivariate Map Reading

Defined simply, selective attention is the ability of an observer to attend to 

one  stimulus while ignoring the confounding influence of others. In the context of 

complex visual stimuli (such as a map), selective attention manifests as the ability to 

attend to specific visual variables while ignoring the others. Visual variables are the 

low-level graphic dimensions of an image (size, shape, color, etc.; see Section 2.1.2 

for a discussion of visual variables within Cartography). A univariate map requires 

the employment of only one visual variable for encoding data; for example, a 

graduated symbol map varies the size of the symbol while its color, shape, and so 

forth are kept constant. With a bivariate map, the presence of additional visual 

variables potentially creates interference; it becomes more challenging to retrieve 

individual attribute values from the symbols or to notice broad geographic patterns 

across the map. The concept of selective attention was developed by experimental 
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psychologists interested in how humans process images, and has been suggested 

as a useful theoretical framework for structuring comparative experiments on map 

types within Cartographic research (Shortridge, 1982).

Selective attention, however, is not purely an obfuscating influence on the 

bivariate map. The map designer can potentially capitalize on the way humans 

process images in order to better communicate some aspect of the geographic 

information. This is due to the phenomena of separability and integrality of visual 

dimensions (the additional properties of configurality and asymmetry will be 

discussed in Section 2.2). If the observer is able to attend to one visual variable 

without much interference from the other, the combination of those visual variables 

are considered separable. A common example of separable visual variables are 

value and shape (Figure 1.1: left); given an array of symbols that vary in both shape 

and value (lightness), an observer can distinguish swiftly between the different 

shapes, as well as light and dark symbols. Integral visual variable combinations, on 

the other hand, cannot be individually attended to when combined, instead forming 

an emergent or gestalt dimension (Carswell & Wickens, 1990). When given an 

array of rectangles that vary in height and width, it is challenging to separate the 

wide rectangles from the thin ones, and the tall ones from the short (Figure 1.1: 

right). Rather, we immediately perceive the combined influence of height and width, 

focusing on the emergent visual dimension of the symbol: its area.
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 In cartography, certain map reading tasks can theoretically benefit from 

keeping the visual variables separable, while others are accommodated by the

emergent properties of integral combinations. Integrality, for instance, can be used to 

focus the reader's attention by highlighting or downplaying certain items on the map. 

This is the basis for many techniques of mapping uncertainty within information; the 

visual variables are employed such that highly certain map features stand out, while 

the less certain features do not (e.g., Leitner & Butterfield, 1993;  Nelson & Edwards, 

2001; Huffman, 2010). Separability between the symbols is preferable when, for 

instance, creating a bivariate map portraying two independent variables. The user 

can attend to each set of data with less visual interference (Shortridge, 1982).

Figure 1.1: Integral versus separable visual combinations. Both series of symbols portray 
the same information, one using height/width and the other using value/shape. Note the  

cluster in the lower left corner is easier to identify when portrayed as four squares, rather  
than when portrayed as four rectangles of equal width. Contrarily, it is easier to pick out  

large rectangles, as opposed to dark hexagons.
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1.4 – Problem Statement and Research Questions

The parcity of user-based, comparative testing of bivariate map types 

presents a significant problem for the thematic map designer; with little theoretical or 

empirical basis from which to draw, the designer cannot make an informed decision 

on which bivariate symbolization scheme to use. Selecting a map type for a bivariate 

map is especially challenging. Numerous bivariate map types are already in 

standard use, and new solutions continue to be proposed (e.g., Roth, Woodruff, & 

Johnson, 2010). Because of the variety of ways univariate map types can be 

'combined' to form a bivariate map, there are many more design possibilities for 

bivariate mapping compared to univariate mapping. Given this, the need to 

understand the capabilities and limitations of these various bivariate map types 

becomes all the more pressing. As stated above, prior research on bivariate map 

symbols (e.g., Carswell & Wickens, 1990; Nelson, 1999; 2000) has suggested that 

choice of map type will facilitate (or complicate) different map reading tasks, but 

further research is necessary both to organize bivariate map types and explore their 

relative strengths and weaknesses.

Therefore, the goal of the research reported in the following manuscript is to 

provide additional insight into the effect that competing bivariate map types has on 

map reading. To accomplish this goal, a controlled experiment was conducted to 

derive empirically the strengths and weaknesses of different bivariate map types, 
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particularly considering the nuances of each bivariate symbol solution given the map 

reading task and map user context. Specifically, this research will seek answers to 

three interrelated research questions:

1. Do the selective attentive characteristics of bivariate map types (separable, 

integral, configural, asymmetrical) impact their general effectiveness or 

efficiency? 

2. Does this efficiency and effectiveness vary across map reading task? As 

reviewed above, studies such as MacEachren (1982; 1995) and Nelson 

(1999; 2000) found that utility of the map type varies across different map 

reading tasks.

3. Does this efficiency and effectiveness vary across characteristics of the map 

reader? As reviewed above, several studies investigating bivariate maps that 

represent information and its uncertainty found that utility of a thematic map 

varies across the expertise of the map user.

The results of this research aid both in choosing appropriate symbol types for 

bivariate mapping, and for structuring future controlled experiments on bivariate 

mapping.



10

Chapter 2: Background

2.1 – Understanding Bivariate Map Types

2.1.1 Overview

Bivariate maps are often described as a combination of two univariate map 

symbols (Tyner, 2010). One example is a choropleth map with graduated symbols 

overlaid on top of it (choropleth with graduated symbols). Color is frequently 

applied to value-by-area cartograms, producing a map with the features of both a 

choropleth and cartogram (shaded cartograms). Given the numerous possible 

combinations of univariate maps, it is helpful to systematically catalog these 

combinations. Constructing such a taxonomy of bivariate map types provides a 

conceptual framework with which to organize existing bivariate map types, and 

potentially identify novel combinations of symbol types not in common use. Such a 

taxonomy also informs the empirical comparison of these different bivariate map 

types, in terms of the separability or integrality of their symbols, a factor increasingly 

recognized as an important component of their functionality (Nelson, 1999; 2000).

Textbook chapters on bivariate and multivariate thematic mapping are less 

systematic than, for example, their writing on univariate map types, map projections,

or color schemes. A synthesis of six different thematic cartography textbooks (Dent,
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Table 2.1. Thematic Cartography texts and the bivariate map types discussed by each.
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 Torguson, & Hodler  2009; Fisher, 1982; Krygier & Wood, 2011; Robinson, 1995; 

Slocum et al., 2003; Tyner, 2010) and the bivariate map types they cover is provided 

in Table 2.1. Altogether, these sources identify eleven different bivariate map types, 

which represent only a small selection of map types identifiable from published maps 

or the cartographic literature. No text describes more than four different bivariate 

map types, and only two map types (bivariate choropleths and choropleth with 

overlaid graduated symbols) are considered by more than two sources.

Nelson (2000) offers what may be the closest approximation to a systematic 

taxonomy of bivariate map types, enumerating existing bivariate map types 

according to combinations of the visual variables (Figure 2.1). Most of Nelson's 

visual variable combinations are relatable directly to established bivariate map types: 

the squares that vary in size and value approximate a shaded cartogram or shaded 

proportional symbol; the height/width rectangle symbol also is an established 

bivariate map symbol (see MacEachren, 1995; Tyner, 2010).

Ultimately, however, Nelson's catalog of bivariate symbols does not serve as 

a complete taxonomy of bivariate map types, as it is not exhaustive (for example, 

there's no typeface/hue combination), although it was not intended to be exhaustive.

 The concept of organizing bivariate symbols based on their constituent visual 

variables is a useful one, however, as visual variables serve as a fundamental 

graphic constituent of all map types (MacEachren, 1995) and information graphics
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Figure 2.1. A selection of bivariate symbols and their constituent visual variables. The 
symbols are labeled with their nearest cartographic equivalent; italicized names denote  

map types in common use. Modified from Nelson (2000, p. 64)
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 more broadly (Bertin, 1967|1983). 

This writing will expand upon the idea of organizing bivariate map types as 

combinations of visual variables by considering another fundamental constituent of a 

map symbol, its dimensionality  (point, line, polygon, etc.) (Bertin, 1967|1983; 

Stefan et al., 2007). Dimensionality, in combination with visual variables, can be 

used to identify every bivariate map symbol that can be constructed (Figure 2.2). 

The following two subsections will discuss the extent of visual variables and 

dimensionalities, constructing an example taxonomy of map symbols based around 

these two fundamental constituents.

Figure 2.2 – The constituent parts of all  
bivariate map symbols: two visual variables,  

paired with two symbol dimensionalities.
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2.1.2 – The Visual Variables

There is no broadly accepted list of visual variables, nor is it broadly 

presumed that such a list can currently be achieved, as advances in display 

technologies and novelties in graphic solutions continue to expose more visual 

variables. Tyner (2010) synthesizes visual variable taxonomies from seven 

Cartographic authors, reproduced in Table 2.2. Between the authors, a total of 13 

distinct visual variables are proposed, with only four of those (size, shape, hue, and 

value) shared among all seven taxonomies. This writing will rely on its own synthesis 

of published visual variables, however this collection is closely influenced by  

MacEachren (1995). A visual assembly of these visual variables is provided in 

Figure 2.3.

Table 2.2: A comparison of visual variable taxonomies. Table modified from Tyner  
(2010).
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The visual variables selected for inclusion in Figure 2.3 represent the contributions 

of several authors. The first set of visual variables were proposed by Bertin (1967|

1983; the terminology translated directly to 'retinal variables'). Bertin's original six 

retinal variables consisted of size, value, grain (texture or pattern to other authors), 

color, orientation, and shape. Morrison (1974) adpated Bertin's variables, subdividing 

color into its constituent parts: hue (the color itself; red, blue, green, and so on), 

value (darkness), and saturation (color intensity or purity). Caivano (1990) expanded 

upon the concept of texture, describing three constituents to any pattern fill: 

directionality (the apparent direction of the pattern, such as horizontal vs. vertical), 

pattern size (the scaling of the pattern), and density (the number of discrete pattern 

elements per unit area). MacEachren (1992), capitalizing on technological 

advancements in graphical displays, proposed crispness (blurriness), resolution 

(generalization), and transparency as visual variables appropriate for cartographic 

use. Presumed to be effective for representing uncertainty, MacEachren called the 

trio 'focus'.
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Figure 2.3 – A collection of visual variables.  
Synthesized from Bertin (1967|1983), Morrison (1974),  

Caivano (1990), and MacEachren (1992).
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2.1.3 – Synthesizing Combinations of Visual Variables and Symbol Dimensionality

Functional bivariate map designs are constrained to the visual variables and 

symbol dimensionalities are appropriate for depicting the given sets of data. This 

section constructs an example of an exhaustive solution space of bivariate map 

solutions, scoped to the common bivariate mapping problem of depicting numerical 

information enumerated to areal units.

Visual variables have varying appropriateness for depicting certain kinds of 

information. Bertin (1967|1983), for instance, distinguishes ordered from non-

ordered variables: a non-orderable variable, like shape, is not precognitavely 

'ranked' by the reader; a pentagon is not understood as representing more than a 

triangle. Ergo, shape is an inapropriate variable for representing ordinal or numerical 

level data, as opposed to ordered variables such as value or size. A thorough 

categorization of visual variables and their congruency with depicting different forms 

of information is offered by MacEachren (1995), who designated twelve visual 

variables as 'good', 'marginally effective', or 'poor' at depicting numerical, ordinal, or 

nominal level data (Table 2.3).

For depicting numerical data, MacEachren (1995) discounts the use of non-

orderable visual variables (arrangement and shape), as well as the focus variables 

(crispness, resolution, and transparency). The latter three variables are suggested 

as more suited for representing ordinal measures of uncertainty, rather than a 
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numeric independent variable. In the case of transparency, though, Roth, Woodruff, 

& Johnson (2010) create convincing examples using transparency to encode a 

numerical, equalizing variable (population). Thus, among the  original visual

 variables identified in Figure 2.3, the ones conducive to representing numerical 

data are size (divided into height and width), transparency, value, saturation, hue,

 orientation, and the various dimensions of pattern fills (size, hue, saturation, value, 

density, and orientation).

As previously mentioned, describing existing bivariate map types based on 

these visual variables requires a second consideration: the dimensionality of the 

symbol. That is, whether the map symbol is a point (0D), line (1D), or polygon (2D) 

Table 2.3 - Visual variable functionality as proposed by  
MacEachren (1995). Darkness indicates that visual variable  

is suitable for depicting that level of data.
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(Tyner, 2010). Volumetric (3D) map symbols are possible, but will not be considered 

in this study. Two bivariate map types might employ the same pair of visual variables 

in their map symbols, but differ according to the dimensionality of the symbols. For 

instance, either a shaded cartogram or choropleth with overlaid graduated symbols 

would represent a size/color combination, however a shaded cartogram employs 

size and color within a polygonal symbol, and a choropleth/graduated symbol map 

uses one polygonal symbol (the choropleth) and one point symbol (the graduated 

symbols). The dimensionality of a symbol does not necessarily match the 

dimensionality of the geographic phenomena (Tyner 2010); point symbols, placed at 

the center of the areal unit, are commonly used to represent an attribute value for 

that area, as with the graduated symbol example. Line symbols are not as 

appropriate for depicting areal features (ibid), leaving only point and polygon 

symbols appropriate for depicting information enumerated to a two dimensional areal 

unit. In a strictly bivariate application, that creates three possible combinations of 

dimensionality for the symbol (Figure 2.4).

•Polygon/Polygon: both visual variables are applied to an area symbol 

(generally the enumerated areal units). An example is a shaded cartogram, 

where the political units (states, countries, etc.) vary by size and color.
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•Polygon/Point: a point symbol is superimposed onto a polygon symbol. The 

point and polygon symbols each vary by one visual variable. One example is 

a choropleth map (polygon symbol, varies by color) with superimposed 

graduated circles (point symbol, varies by size).

•Point/Point: a bivariate glyph. Both visual variables are applied to a point 

symbol, with no statistical information encoded into the 'basemap'. A common 

example would be a rectangle map, where the point symbols are rectangles 

whose height and width each represent one variable.

Tables 2.4, 2.7, and 2.8 treat each of these dimensionality pairings individually, in 

combination with the visual variables outlined above, summarize every basic and 

tenable way to produce a bivariate map of enumerated, numerical information.

Figure 2.4: All three maps portray the same information, using the same visual variables  
(size/value), but with different combinations of symbol dimensionality.
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Tables 2.4, 2.5, 2.6. An exhaustive combination of methods for representing enumerated,  
numerical information on a bivariate map.

Items marked with an X are considered graphically or conceptually untenable.

Items in italics are most conceptually appropriate for map use – items in bold are map types  
already in common use.

Items with asterix(*) are perceptually comparable to their labeled map type.
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2.3 – The Role of Selective Attention

2.2.1 – Conditions of Selectivity

As mentioned in Section 1.3, the separability or integrality of a bivariate map 

type strongly influences the way the map reader mentally processes it, and therefore 

should influence its functionality in a map use setting. The selective attentive 

characteristics of a symbol (hereafter referred to as its selectivity) are dependent on 

the visual variables used in the symbol's construction (MacEachren, 1995; Nelson, 

2000; Shortridge, 1982; Carswell & Wickens, 1990). One major challenge to 

selectivity is that the distinction introduced in Section 1.3 between 'integral' and 

'separable' visual variable pairs is likely a false dichotomy. Multiple authors have, 

instead, suggested integrality and separability as opposite ends of a continuum 

(Shortridge, 1982). Between these antipodes are visual combinations that exhibit 

certain qualities of both integrality and separability. MacEachren (1995) and Carswell 

& Wickens (1990) describe this intermediate level along the selectivity continuum as 

configural combinations. One illustrative example of configurality (via Nelson, 2000) 

is a circular symbol divided in half, with both halves varying in terms of their value (a 

value-value combination; Figure 2.5). It is possible to attend to just the left or right 

halves of the circle (separable), but there are also emergent features and 

dimensions that arise via the combination of the two halves (integral), such as the 

overall darkness/lightness of the symbol or the contrast between the two halves. In 
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practice, configural combinations tend to arise when a symbol employs the same 

visual variable twice, such as value/value or size/size (ibid).

The fourth condition of selectivity is asymmetrical, which, like configural, 

creates emergent visual dimensions characteristic of integral selectivity, while 

retaining some degree of separability (Carswell & Wickens, 1990; Nelson, 2000). 

The interference present in asymmetrical combinations is conditional: one visual 

variable may be difficult to parse while the other can be attended to with relatively 

little inhibition. 

Asymmetrical combinations tend to arise when one constituent variable 

serves as a stronger visual cue than the other. The combination of numerousness 

Figure 2.5: A configural combination 
(value/value). Contrast between the two 

circle halves, as well as the overall darkness  
of the circle, are emergent features.
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(pattern density) and size is an example (Figure 2.6). The emergent dimension is 

the relative area marked by the dots (i.e., the 'ink coverage'); this increases with both 

density and the size of the marks, creating redundancy when these two variables are 

in agreement. When they are not in agreement, the emergent dimension (coverage) 

can be equivalent between two different symbols, but based on different influences 

(either high density and low size, or large size and low density).

2.2.2 – Selectivity of Map Types 

Selective Attention research does not always examine symbols comparable to 

those familiar to information designers; nonetheless, several examinations have 

Figure 2.6: Size/Density is an asymmetrical  
combination.
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determined the selectivities of visual combinations used in thematic cartography. 

Table 2.8 presents all visual variable combinations (based on the catalog of visual 

variables presented in Section 2.1.2), and their selectivity, derived from the 

synthesis of Shortridge (1982), Nelson (1999; 2000), and Carswell & Wickens 

(1990). 

Configural combinations, as understood by the literature, tend to arise from 

homogenous pairings of visual variables (Nelson, 2000). For Table 2.8, all 

homogenous pairing are presumed to be configural (see Section 2.2.1). No 

Table 2.8 – Combinations of viusal variables and their attentive characteristics (table  
divided for legibility at print size). Selectivities are Separable (S), Integral (I), Configural  
(C), Asymmetrical (A), or unknown (-). Items in bold have been established by empirical  
study; greyed items are estimations by the author. * Note: determinations of value/width,  
value/height, hue/width and hue/height are based upon studies of hue/size and value/size.
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combinations, other than ones identified in the literature, were presumed to be 

asymmetrical; the presence of this characteristic is the most difficult to predict, as 

the perceptual properties of asymmetry are nuanced compared to the others. 

A large proportion of combinations in Table 2.8 do not have established 

condition of selectivity in the literature. The unclassified combinations generally 

involve MachEachren's (1992) 'focus' variables (blur, transparency, and resolution) 

and the pattern fill variables described by Morrison (1974) and Caivano (1990). 

These variables were derived from a Cartographic background, and therefore would 

be unlikely to be seen in studies performed by  Experimental Psychologists. The 

large number of gaps in the table suggest there is continued work to be done in 

reconciling the research fields of Cartography and Selective Attention.

2.2.3 – Selective Attention and Encoding Data

In a bivariate map symbol, the two attributes are encoded by the two visual 

variables used to construct the symbol. Each combination of visual variables also 

creates two emergent visual dimensions, which are visual variables unto 

themselves. A combination of height/width, for instance, creates two emergent visual 

dimensions: area and directionality (Figure 2.7).

These gestalt visual variables encode information in the same way the 

original visual variables do. One encodes a positive association between the data 

(i.e., map features where both attributes are low vs features where both attributes 
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are high) while the other gestalt dimension encodes negative association (features 

where one data variable is higher than the other, or vice versa). Given a matrix of 

symbols (as would be seen in a two-axis map legend), these emergent visual 

variables can be found along the orthogonal axes (Figure 2.8). (From herein, these 

orthogonal information axes will be referred to as the Plus(+) and Minus(-) axes, 

and the original information axes as the X and Y axes). Returning to the example in 

Figure 2.7, the Plus(+) axis in this symbol set will be encoded by the area of the 

symbol, and the Minus(-) axis will be encoded by the directionality of the symbol 

(ranging from horizontal to vertical, with perfect squares existing in between).

A variety of potential emergent visual dimensions exist when visual variables 

are combined (see Figure 2.9). These emergent dimensions appear to exhibit 

varying strengths as a visual cue. Within a bivariate symbol,  the relative strength of

 the four visual dimensions (X, Y, and the two emergent dimensions) appear to 

determine whether the symbol will be separable, integral, configural or asymmetrical. 

Integrality, for instance, occurs when an emergent dimension (generally the axis of

Figure 2.7: The emergent dimensions of a height/width combination.
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 positive association) provides such a powerful visual cue that it interferes with the 

viewer's ability to attend to its constituent visual variables on the X and Y axes. A 

summation of the four categories of selectivity, and the hypothesized degree to 

Figure 2.8: The orthogonal information axes 
in a bivariate symbol matrix (bivariate map 

legend).

Figure 2.9: An example of two bivariate symbols and their emergent dimensions. The  
emergent dimensions are encoded along the orthogonal (Plus[+],Minus[-]) axes.
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which they support the parsing of information along their four visual axes, is provided 

in Figure 2.10.

Figure 2.10:The four conditions of selectivity, based on the relative strength of  
their four visual dimensions. Note that there are multiple means of achieving  
asymmetry: the stronger visual cue may alternatively be found on the Y axis.
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2.3 – Tasks in Bivariate Map Reading

At its most basic level, a thematic map facilitates the extraction and analysis 

of information by the map reader. Every map supports a variety of activities the 

reader can engage to aqcuire information from the map; the term map reading task 

is used to describe the single example of such activity. The design of a map, 

including its symbol design, supports different map reading tasks to different 

degrees. Often, the cartographer must sacrifice the efficiency of one task in the 

interest of another. One such example is the functional difference between classed 

and unclassed choropleth maps (Gale & Halperin, 1982). A classed choropleth map 

divides the information values into ranges, with each member of a class receiving 

identical shading; an unclassed choropleth map employs a color ramp such that 

each enumeration unit has its own unique color, according to its unique attribute 

value. Classed choropleths are believed to better support the extraction of individual 

attribute values, as well as better support the comparison of values between two 

noncontiguous areal units; unclassed choropleths have been recommended when 

the overall distribution of the attributes is more important than the values for 

individual areas (ibid), or when choropleth maps are sequenced within an animation 

(Harrower, 2007).

What map use tasks are relevant to bivariate mapping, and how are they 

influenced by symbol design? Nelson (1999; 2000) considers a tradeoff between 

separable and integral bivariate symbols. Separable symbol sets enhance the ability 
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of viewers to attend to the individual variables, while integral ones enhance their 

ability to visualize the relationship between the variables. Nelson's methodology is 

derived from the speeded classification studies of selective attention, modified for 

cartographic applications. Speeded classification is an empirical research 

methodology employed by researchers in Experimental Psychology, wherein a 

particpant must, as swiftly as possible, match a given symbol to another within a 

small array of symbols. Within speeded classification, there are four essential tasks 

(illustrated in Figure 2.11): baseline tasks (viewer must attend to one visual 

variable, with the other visual variables held constant), filtering tasks (viewer must 

attend to one visual variable while ignoring the confounding influence of another), 

redundancy tasks (there is variation in both visual variables, and the viewer can 

attend to either one), and condensation tasks (there is variation in both visual 

variables, and the viewer must attend to both of them).

Although these four tasks effectively cover the breadth of potential 

interferences possible with bivariate symbols, they do not effectively reach the 

breadth of possible activities within reading a bivariate map (or thematic map in 

general). Bivariate maps often involve a greater number of symbols than a speeded 

classification task, and the viewer often must visually aggregate a large number of 

symbols in order to understand large-scale geographic patterns in the mapped
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 phenomenon. The reader must be able to relate the visual dimensions of the 

symbol to attribute values in the mapped information, whereas in speeded 

classification the viewer need only to determine whether two given symbols are

Figure 2.11: The four tasks within speeded classification. Modified  
from Carswell & Wickens (1990) and Nelson (2000).



34

 identical. Maps also must place the symbols in the context of both a map and a 

legend, providing a context that can influence how viewers will interpret the symbols.

Multiple authors have attempted to provide a taxonomy of user tasks specific 

to the context of thematic cartography. Roth (2011) offers a synthesis of these 

objective-based taxonomies. Some of these taxonomies (e.g., Zhou & Feiner, 1998; 

Crampton, 2002; Amar, Eagan, & Stasko, 2005; Yi et al., 2007) include tasks specific 

to interactive mapping or exploratory data analysis in general, such as running 

calculations from the data, or visual reexpression of the information, and are 

therefore are ill-suited for this research, which focuses on static maps. Regardless, 

the most commonly offered taxonomy (shared by Wehrend & Lewis, 1990; Blok et 

al., 1999; and Andrienko, Andrienko, & Gatalsky, 2003) is also the simplest, 

containing only two objectives: identify (extract information about single map object) 

and compare (comparing & contrasting two or more map objects). In the setting of a 

bivariate map, identify and compare can be applied along all four information axes 

(X, Y, Plus[+], Minus[-]) to accomplish what would otherwise be more sophisticated 

goals. Identifying a map object along the Plus(+) or Minus(-) axes, for instance, 

provides a 'shortcut' to describing the association between the two data variables 

within that map object.

Map reading tasks are capable of being performed at different visual levels, a 

concept first articulated by Bertin (1967|1983). Bertin distinguished between 

elementary tasks (those which consider only individual objects in the graphic), 



35

intermediate (also known as general) tasks (those which consider clusters of 

objects containing several graphic objects), and global tasks (those which the 

viewer attends to the overall distribution of graphic objects). In a bivariate map, an 

elementary task would involve attending to single map features (a single areal unit or 

a single point symbol). General and global level tasks would involve examining 

regional and global level patterns. Although Selective Attention research has 

examined how humans are capable of seeing multiple graphical elements as a 

single coherent group (Pomerantz & Schwaitzberg, 1975), the distinction between 

elementary and general level tasks appears unique to information visualization.

2.4 – Role of Expertise in Map Reading

Audience is an important consideration in map design; each viewer's 

understanding of the map will be filtered by their particular knowledge base, attitude, 

expectations, and cognitive faculties (MacEachren, 1995). A functional map is 

designed to accomodate the abilities and needs of its expected audience. Bivariate 

maps, being a broad category of thematic maps, have a highly variable audience. 

Their context ranges from sophisticated exploratory mapping to communicating 

information to the general public.

It can be expected that users with different levels of expertise in map reading 

and spatial analysis will have varying capacity to process the visual of a bivariate 

map. Expertise is defined as the knowledge and skills learned by the user to 
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enhance and append one's innate abilities (Roth, 2011). In Selective Attention 

research, it is recognized that the way a viewer processes an image shifts once they 

are familiar with the classification task (Shortridge, 1982). An experienced map 

reader may process a map both faster and in a distinctly different way than a 

member of the general public, meaning that certain map types may be more or less 

appropriate for usage by a given audience.

User testing in cartographic research does not frequently consider the 

potential influences of expertise. The participants' abilities are implicitly presumed to 

be reflective of all map readers. Several cartographic studies have examined the 

influence of expertise in their investigations, however. Evans (1997) tested subjects' 

preferences between a variety of maps showing reliability information for a land 

cover map. Participants were separated into either the 'novice' or 'expert' category. 

The former group was composed of undergraduate students who had taken a 

Cartography-related course. The latter were students and professors who had some 

training in either GIS, Remote Sensing, or Cartography. Experts spent a longer time 

looking at the maps before making a decision, but otherwise the two group's 

performance was similar.

Cliburn et al. (2002) and Slocum et al (2004) incorporate the role of expertise 

in qualitative studies of dynamic displays. Cliburn et al. solicited feedback from 

hydrology experts, usability engineers, and regional policymakers on an a 

hydrological visualization. Slocum & Sluter ran interviews and focus groups with 
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non-geography students ('novices'), geography majors and grad students, and 

domain experts to obtain their impressions of an animated mapping software. Both 

studies were able to identify and articulate each group's varying expectations and 

critiques of the map display.

Hope & Hunter (2007) and Roth (2009), similar to Evans (1997), investigated 

participants' decision-making when given maps providing uncertainty information, 

and divided participants into cohorts based on expertise. Hope & Hunter's subjects 

self-classified themselves as either 'novice', 'some experience', or 'experienced', 

based upon the amount of time they had experience with GIS (less than six months, 

between six months and two years, and more than two years, respectively). Roth 

used several self-reported measures (work experience, education/training, and 

personal experience) to classify participants into three classes of expertise: novices, 

map use experts, and domain experts (in this study, the domain was floodplain 

analysis). The results showed that experts (both domain and map-use) were 

confident in reading the map and arriving at decisions based on its information (they 

reported low feeling of difficulty and intermediate-to-high confidence in their 

responses), however the map use experts were not significantly better than novices 

in the accuracy of their assessment.
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Chapter 3: Methods

A controlled experiment was administered to assess the variation in 

performance across various bivariate map design solutions. The purpose of the 

study was to examine empirically how different map types and different conditions of 

selectivity support different bivariate map reading tasks, and if this level of support 

varies according differences in the expertise of the map reader. Conceptually, the 

experiment was designed to reconcile, at least in part, the methods employed in 

speeded classification and the methods employed in cartographic performance 

testing. This involved asking participants to perform a selection of map reading tasks 

across eight different bivariate map types, recording their accuracy and response 

time to each question. The survey also included questions on the users' personal 

preferences of the different map types.

3.1 Participants

A total of 55 participants participated in the controlled experiment. The 

majority of participants were recruited from the Geography Department of the 

University of Wisconsin – Madison, although the study was open to any interested 

participants. Participants were recruited purposefully to represent a range of 

experience and knowledge of cartography and spatial analysis. Recruiting methods 

included in-person advertisements given at the start of Geography lectures and 
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targeted e-mails to Geography-related listservs. The study participants were offered 

5 USD as compensation for their time. Funding for the study was provided by the 

Trewartha Graduate Research Award.

Biographic information about the participants was collected at the start of the 

experiment, designed to assess the participants' expertise across the three 

dimensions of expertise used by Roth (2009): work experience, education & training, 

and personal experience. A summary of the participants' biographical information is 

provided in Table 3.1.

3.2 Materials

Eight common bivariate map types, drawn from Tables 2.5-2.7, were 

designed for inclusion in the experiment. Bivariate map types were selected to 

include two maps types for each condition of selectivity (separable, integral, 

configural, and asymmetrical). These map types were selected based on the 

following criteria: 1) if possible, there was existing research establishing the map 

type's selectivity (refer to Table 2.8), 2) the map type was particularly representative 

of the perceptual features associated with its selectivity, and 3) the map type is 

Table 3.1: Participant summary table.
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commonly used in cartographic practice. The eight map types selected were 

shaded cartogram (size/value, separable), choropleth with graduated symbols 

(size/value, separable), rectangle map (height/width, integral), bivariate 

choropleth (value/hue, integral), bar chart (height/height, configural), spoke glyph 

(orientation/orientation, configural), value-by-alpha (hue/transparency, 

asymmetrical), and shaded texture (value/pattern density, asymmetrical) (Figure 

3.1).

Figure 3.1. The eight map types included in the experiment.
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The map legends were designed following several principles, in order to 

control for possible confounding factors. All maps employed the same green hue, 

excepting those requiring hue as a visual variable. These maps employed a green-

blue color ramp, presumed to remain legible under most forms of color vision 

deficiency (Gardner, 2005; Jenny & Kelso, 2007). The various legend designs 

employed the same scaling of size, value, and hue when needed. 

The design for the bivariate choropleth uses a modified construction from the 

other legend designs: the visual variables are applied across the orthogonal 

information axes, and it employs small variations in saturation as well as hue. This 

was done to align the legend design with established recommendations for the 

design of bivariate chcoropleth legends (Trumbo, 1981; Dunn 1989). The design for 

the value-by-alpha legend included a pattern fill to allow for a better depiction of 

transparency; on a matte white or black background, variations in transparency are 

indistinguishable from variations in value, rendering a value-by-alpha map 

conceptually identical to a bivariate choropleth map (this issue has also been 

considered by Roth, Woodruff, & Johnson [2010]).

The fictitious attributes presented on all maps were 'chicken consumption' and 

'pizza consumption', measured along an ordinal scale (Low, Med, and High) (Figure 

3.2). These attributes were selected to avoid depicting phenomena that would elicit a 

strong emotional response (such as crime rates, income, etc.), and to avoid 

phenomenon that participants would presume to be correlated in reality (whether 
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that correlation be positive or negative). These fictitious attributes were also selected 

to ensure that the various map types do not represent the information saliently (i.e., 

none of the map types should be more perceptually or cognitively appropriate for 

representing the phenomenon).

Each map legend was then applied to a basemap comprised of 36 counties 

from western Ohio, rotated 90 degrees, and modified slightly in size and topology 

(Figure 3.3). The goal was to create a basemap that met several criterion: The 

enumeration units were generally consistent in size, and could be aggregated into 

nine compact, four-unit regions. The areal units can be alotted into nine larger, 

compact, four-unit regions. The remainder of this text will refer to the individual 

enumeration units as units, and the larger four-unit areas as regions. This 

distinction allowed for the inclusion of both Elementary (unit-level) and General 

Fig 3.2 Example legend using the  
fictitious attributes.
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(region-level) questions in the experimental design. Subdividing the map into regions 

also assisted in alotting symbols onto the maps in a balanced way.

From this basemap and the predetermined legend designs, the eight bivariate 

maps were constructed (see Figure 3.4 for a visual representation of this process 

and Figure 3.6 for a collection of the final maps). A rule for constructing regions 

representative of each combination of attributes was determined: two regions on the 

map would be High X/High Y, two would be Low X/Low Y, two Low X/High Y, two 

High X/Low Y, and one Med X/Med Y. A region would contain two symbols of its 

representative data combination, and one symbol each from the data combinations 

adjacent to it on the legend; for instance, a High X/High Y region would contain two 

Figure 3.3. The basemap, with color distinguishing 
the nine regions.
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High X/High Y symbols, one Med X/High Y symbol, and one High X/Med Y symbol. 

The allotment of regions on each map type was randomized and normalized such 

that no two maps would portray an identical distribution of symbols. The allotment of 

symbols to the four units within a region was randomized as well.

3.3 Procedure

The questions asked in the survey were based on the discussion of map 

reading tasks in Section 2.3. The questions considered represented a combination 

of three criteria:

• Search Objective (2): Either identify (retrieve value from one unit or one 

region) or compare (assess similarity/difference between two units or two 

regions). 

• Search Axis (4): The information axis within which the user identifies or 

compares. As introduced in Section 2.2.2, these axes include X (the first 

mapped attribute), Y (the second mapped attribute), Plus(+) (positive 

association between attributes; High/High to Low/Low), and Minus(-) 

(negative association between attributes; High/Low to Low/High).

• Level of Reading (2): tasks can be performed at either the Elementary level 

(looking at single map units) or General level (looking at the regions 

composed of multiple units).

The combination of these three factors results in 16 potential tasks (Table 

3.2).
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Fig 3.4. The construction of the base maps.
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Applying all 16 tasks for each of the 8 maps would result in 128 trials total. 

This number of trials was deemed too large, as it would render it difficult to recruit 

participants, and run the risk that participants would become fatigued through the 

experiment and cease giving the questions their full attention. Therefore, the final 

survey was constrained to include only the more complex compare tasks, omitting 

the identify tasks. This left 8 trials for each map type, or 64 trials in total. Figure 3.5 

provides examples of each kind of task.

The survey contained 3 main portions. (1) A five-question opening survey on 

the participants background. (2) The main portion of the survey, consisting of a 

training session followed by the 64 trials, and (3) a final portion of the survey, which

 gauged user preference of the eight map types shown.

The main portion opened with a training block, designed to familiarize the 

participants with the user interface, map legends, and type of questions contained in

 the survey. The training block used a map of its own symbolization, consisting of 

Table 3.2 The task taxonomy considered by the study. Only comparison tasks were ultimately  
included in the experiment.
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colored text labels that were non-analogous to any of the other map types tested 

(Figure 3.5). Responses and response times from this training block were not 

recorded. The different map types were presented in 8-question blocks, with their 

order of presentation randomized for each participant. Each block was prefaced with 

a familiarization screen, showing the map and the legend. These screens paused for 

15 seconds before allowing the participant to continue. The order of the questions 

within in each block was randomized as well. For all questions, the program 

recorded the participants' answer as well as their response time. 

The final portion of the survey re-presented the 8 different maps used in the 

survey, and asked participants to the rate them from 0-7 on the following scales 

(modified from Olson, 1981):

• Visually Displeasing ↔ Visually Appealing

• Bad ↔ Good

• Difficult to Read ↔ Easy to Read

• Usual  ↔ Unusual

• Does not show individual distributions clearly ↔ Does show 
individual distributions clearly

• I cannot judge the closeness of the relationship ↔ I can  judge the 
closeness of the relationship

The experiment was administered in a computer laboratory, allowing the 

survey to be administered to multiple participants at once in a quiet environment. 

The room's computers were identically imaged, and had monitors with identical size 

(24”), resolution (1920×1200 pixels), and contrast/brightness settings.
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Figure 3.5a. Examples of X and Y Elementary tasks.
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Figure 3.5b. Examples of Plus(+) and Minus(-)  
Elementary tasks.
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Figure 3.5c. Examples of General X and Y tasks.
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Figure 3.5d. Examples of General Plus(+) and Minus(-)  
tasks.
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Figure 3.6a. Shaded Cartogram and Choropleth with  
Graduated Symbols (Separable).
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Figure 3.6b. Rectangle and Bivariate Choropleth maps 
(Integral).
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Figure 3.6c. Bar Chart and Spoke Glyph maps (Configural).
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Figure 3.6d. Shaded Texture and Value By Alpha maps 
(Asymmetrical).
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Chapter 4: Results & Interpretation

4.1 Accuracy

Participants were consisently successful in accurately answering the 64 

questions. The participants' global accuracy rate was 96.1%. 17 of the 64 questions 

had an accuracy rate of 100% (that is, 26% of the map questions were answered 

correctly by every single participant). The highest and lowest accuracy rates 

between map types were the bivariate choropleth (99.1% accuracy) and Shaded 

Texture (92.7% accuracy), respectively (Table 4.1). The highest and lowest accuracy 

rates between tasks were the Elementary Plus(+) task (99.5%) and Elementary X 

task (93.2%), respectively. The most accurate map types by selectivity were the 

integral combinations (overall accuracy: 99.1%) and the least accurate were the 

Configural (93.9%) (Table 4.2). ANOVA analysis of accuracy rates between trials did 

not show statistically significant differences between accuracy across the different 

map types (p-value = 0.064) nor across the different conditions of selectivity (p-value 

= 0.0598), but did show statistically significant differences between the different 

tasks (p-value = 0.044).

The consistent performance in accuracy across map type indicates that all 

map types tested meet the minimal requirement of portraying the information, and 

presumably do not provide a false impression of the information. Ultimately, it is
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Table 4.1. Accuracy by map type and task (divided for legibility at print size).

Table 4.2. Table of accuracy rates by selectivity and task.
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Figure 4.1a. Accuracy rates for separable and integral combinations.
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Figure 4.1b. Accuracy rates for asymmetrical and configural map types.



60

difficult to form any prescriptive claims about the map types based upon the 

accuracy results. Variations in the various participants' accuracy rates between the 

different map users  carried as much weight as the variations in accuracy between 

the different map types. The global accuracy rate (that is, combining every 

participants' response to every question) was 96.1%. The standard deviation of all 

participants' accuracy rates was 0.0395. The standard deviation of accuracy rates 

across the 64 map  trials was 0.0452.

It is challenging to explain the difference in accuracy performance across the 

eight different tasks. The best-performing tasks, in terms of average performance 

across map type, were questions along the Plus(+) axis (the Elementary and 

General Plus(+) axis questions had an overall accuracy rate of 99.5% and 98.2%, 

respectively). Due to the phrasing of the Plus(+) axis questions, and the nature of 

identifying positive association,  the Plus(+) axis questions avoid what could be a 

common bivariate map reading error: forgetting which visual variable encodes which 

statistical variable. This mistake would cause a wrong answer when answering a 

question in the X, Y, or Minus(-) axes, but not the Plus(+) one.

An alternative explanation for the accuracy differences across task is the 

influence of an outlier. The Elementary X task had accuracy rates above 90% for 

most map types, except for the shaded texture map, which had an accuracy rate of 

72% for that task (the lowest accuracy rate of any combination of map type/task). 

The relative poor performance on this question may simply be an artifact of the
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 specific way this symbol was constructed in this study. At the thinnest lines of the 

shaded texture, it is challenging to distinguish the variation in the lines' darkness; a 

stronger contrast between the lightest and darkest values could have alleviated any 

misreadings.

4.2 Response Time

Response times (RTs) varied noticably across map type, task, and selectivity. Across 

the different map types, the lowest median RT was found in the rectangle map (20.7 

seconds) and the highest was found in the spoke glyph (36.1 seconds). 

Response times (RTs) showed statistically significant differences across both map 

type, map selectivity, and task (P < 2e-16, using ANOVA). These differences indicate 

that the choice of map type has important impacts on how intuitively users are able 

to extract various forms of information from the map.

Between the different map types, a pairwise comparison of means (Tukey 

HSD test) found statistically significant differences (at p < 0.05) in 18 out of the 28 

possible comparisons between map types (Table 4.5). These differences hold true 

when aggregating each map's results to compare between selectivities, with every

 condition of selectivity being statistically significant when compared against each 

other (again, using Tukey HSD at p < 0.05) (Table 4.6).
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Figure 4.2a. Median RTs (secs) for separable and integral map types, by task.  
Left side of bar represents Elementary level, right side Intermediate level.
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Figure 4.2b. Median RTs (secs) for asymmetrical and configural map types, by  
task. Left side of bar represents Elementary level, right side Intermediate level.
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Table 4.3. Median response times (in seconds) across the 64 trials.(table divided for 
legibility at print size)

Table 4.4. Median response time (in seconds) across the map types and 
trials, aggregated to selectivity.
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Table 4.5. p-values of pairwise comparison of mean response time. (Table divided for 
legibility at print size). Statistically significant results (at p < 0.05) are highlighted in green.

Table 4.6. p-values of pairwise comparison of mean response time, organized by  
selectivity. Statistically significant results (at p < 0.05) are highlighted in green.
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Table 4.7. Map types that differed from the global median within a given task. 
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These measures provide information only on the global differences in reaction 

time across the different map types: examining the variation of the maps' 

performance across the eight different tasks shows readily apparent nuances 

(Figure 4.2). To elucidate meaningful effect sizes in reaction times between the map 

types and tasks, additional statistical tests were run if any map type deviated 25% or 

more from all maps' median RT for that task (Table 4.7). To illustrate with a specific 

example: averaging the median RTs for the general-level Y task, across all maps, 

results in an average median RT of 28.76 seconds. 28.76 ± .25 creates a range of 

21.56 seconds to 35.94 seconds. Any map type that had a median RT outside these 

bounds in the General Y task had its reaction times compared with the aggregated 

reaction times of all other maps within that task.

In analyzing Table 4.7, The performance of the spoke glyph deserves 

attention: it performed considerably slower than the average map in five out of the 

eight tasks, and in all cases these results were statistically significant at p < 0.05. 

This includes performing worse than the other maps in all four general-level 

questions. In all, participants responded to the spoke glyph 8.76 seconds slower 

than average in the Elementary X task, 12.4 seconds slower in the General X task, 

18.9 seconds slower in the General Y task, 16 seconds slower in the General 

Plus(+) task, and 13.9 seconds slower in the General Minus(-) task. There are two 

likely explanations for the spoke glyph's markedly poor performance. First, 

orientation itself may be unintuitive for portraying this set of ordinal data. One way to 



68

conceptualize the spoke glyph symbol is to read it similarly to the speedometer of a 

car, with a bar pointing upward to indicate a high attribute value. Conjecturally, 

viewers may instead associate the symbol's shape with the hands of an analog 

clock, an association that would not assist (and may in fact actively interfere) with 

the ability to interpret the orientation of the spoke glyph's bars with the concept of 

High/Med/Low they were intended to represent. Alternatively, it may be that the 

spoke glyph simply fails to provide any compelling gestalt dimensions for the reader 

to attend. When assembled together on the map (Figure 4.3), the spoke glyphs fail 

to form any immediately intuitive emergent dimensions, but rather a chaotic 

assemblage of lines, angles, and whitespace. This explanation would especially 

account for the spoke glyph's poor performance in general map reading questions. 

Whatever the reason, the fact that reaction times to the spoke glyph were so 

strongly and universally slow calls into question the continued use of this symbol as 

a bivariate mapping solution.

In the Elementary X task, the shaded texture and spoke glyph maps were 

slower than the rest of the map types tested. The shaded texture map had RTs 6.6 

seconds higher than average in this task. Contrast difficulties inherent in the shaded 

texture's symbol design (as mentioned in Section 4.1) are a probable contributor. 

Curiously, the shaded texture map performed worse than the other maps in the 

Elementary X task, but performed better than the other maps in the General X task 

by 7.2 seconds on average. This difference is potentially due to viewers being able 
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to visually aggregate the closeness of the lines, forming what looks akin to a more 

traditional and intuitive visual cue: value steps (Figure 4.4).

Figure 4.4. The General X shaded texture map.

Figure 4.3. The spoke glyph map.
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The quick reaction times to the rectangle map in the Elementary Y task (6.3 

seconds faster than average) are surprising, especially given that this effect was not 

seen in the rectangle map's Elementary X task. Assumedly, the height of a rectangle 

would be an equally effective means of encoding information as its width. This 

performance in Elementary Y was just barely statistically significant at the 0.05 

confidence level (p = 0.0479), so this difference in performance may simply be the 

product of sampling error. Alternatively, participants who completed the bar chart 

block before the rectangle map may have been primed to seek out variations in 

symbol height. In the General Y task, the spoke glyph performed poorly (as 

previously discussed), and the choropleth with graduated symbols performed better 

than the others as a whole (median RT 9.5 seconds lower than average). This may 

be reflective of the choropleth with graduated symbol's separability: viewers were 

able to attend to the graduated symbols with little interference from the underlying 

choropleth.

Two map types had particularly low reaction times in the General Plus(+) task: 

the shaded cartogram (median RT 6.7 seconds less than average) and the bar chart 

(median RT 7 seconds less than average). Of these two, only the bar chart's 

differences were statistically significant (at p < 0.05). Visual cues in the Plus(+) axis 

were hypothesized to be strongest in integral combinations, so it's surprising that the 

bar chart (a configural combination) provided the best reaction times in the Plus(+) 

axis tasks, which it did at both the Elementary and General level of reading. Despite 
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not being integral, the bar chart still contains a strong emergent dimension along the 

Plus(+) axis: the area of the symbol, in a similar way to the integral rectangle map. 

Finally, the General Minus(-) task was well supported by both the choropleth 

with graduated symbols (median RT 10.8 seconds less than average) and the 

bivariate choropleth (12.2 seconds less), and poorly supported by the spoke glyph 

(13.9 seconds higher than average) and bar chart (20.4 seconds higher). The 

choropleth with graduated symbols and the bivariate choropleth supported this task 

in different ways. In the case of the choropleth with graduated symbols, the 

separability of the two variables provides an uninhibited means to locate each 

attributes' value on the legend, and answer the question by attending to the 

attributes individually. In the case of the bivariate choropleth, it contains a very 

strong visual cue along the Minus(-) axis: the greenness/blueness of the symbol. 

Viewers needed only to match the color chips with their representative version in the 

legend, avoiding the need to attend to the data variables individually. 

Examining variations in performance between Elementary-level and General-

Table 4.8. Combinations of map type/task wherein the General level differed from the 
Elementary level at ± 25%.
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level tasks within a map type, a similar technique was used as the examination 

presented in Table 4.7. Map type/tasks whose median reaction times varied by more 

than 25% between the Elementary and General levels are assembled in Table 4.8. 

ANOVA tests were then run treating Elementary-level responses and general-level 

responses for each combination of map type/search axis as independent 

populations. All of the tested differences were statistically significant at p < 0.05.

In six out of the seven tasks tested, reaction times were slower moving from 

the Elementary task to the General one. This may represent a technique on the 

participants' behalf to cautiously answer the general-level questions by attending 

individually to the four enumeration units within each region, rather than attempt to 

use gestalt dimensions to create an 'at-a-glance' understanding of the attribute 

values within the region. 

Some of the most extreme disparities in reaction times between the 

Elementary/General level occured in the configural map types within the Minus(-) 

axis. In both the spoke glyph and the bar chart, participants took more than 50% 

longer to respond to the General Minus(-) task compared to the Elementary Minus(-) 

task. A possible explanation can be found in how the configural combinations 

visually encode the Minus(-) axis: by a 'leftedness' vs. 'rightedness' of the symbol. At 

the Elementary level, the viewer need only to determine which side of the symbol is 

higher, and relate that to which side of the symbol encodes which attribute. At the 

General level, the viewer must attempt to aggregate the leftedness/rightedness of 
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several of these symbols, and the fact that these symbols are located to the left and 

right of each other on the map neccessarily provides interference (Figure 4.5).

4.3 Influence of User Expertise

Participants' accuracy and response times varied little according to user 

expertise. The difference in average reaction times between those who have and 

those who haven't taken coursework in Cartography/GIS is roughly three seconds 

(Table 4.9). Participants reporting an educational background had an overall 

accuracy  roughly half of a percent (0.04%) better than those without. Using ANOVA 

to test these differences at p = 0.05 reveals no statistically significant results. Nearly 

Figure 4.5. The General Minus(-) task for the  
bar chart map. 



74

identical results occur using the other major measure of expertise, work experience. 

Again, no statistically significant differences were found between those with and 

those without work experience in Cartography/GIS.

Even at the most extreme difference in user expertise, little difference 

between participants is seen. Table 4.10 shows only the most experienced and least 

experienced participants in the study: those who reported both educational and work 

experience in Cartography/GIS, and self-rated themselves as familiar with maps (5 

or higher on the 7-point Likert scale), and those who reported neither educational 

nor work experience in Cartography/GIS, and self-rated themselves as unfamiliar 

with maps (4 or lower on the 7-point Likert scale). Once again, the effect size 

Table 4.9. Accuracy and reaction time differences according to two 
measures of user expertise.

Table 4.10. Comparison of RT/accuracy for the extrema in expertise.
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between these two groups is minimal: mean reaction times varied by less than 2.5 

seconds, and both groups were within a single percentage point of each other in 

accuracy rates.

There are several ways to interpret these results. Although those involved in 

the fields of Cartography/GIS are more likely to encounter bivariate maps like the 

ones used in the study, it is uncommon for any coursework or job training to actually 

instruct individuals on techniques to extract information from a bivariate thematic 

map. In other words, there exists little in the way of fostering map literacy specific to 

bivariate maps. As examined throughout Section 2.2.2, bivariate maps contain  

graphical cues that can assist in efficiently extracting information from them, but 

these visual cues exist subtextually in the map. A map reader, even one with 

expertise in map use, may not notice the existence of these 'visual shortcuts', and 

therefore be unable to exploit them to extract information from the map more 

efficiently.

Alternatively, the participants in the study may not have differed in expertise 

enough to produce meaningful results. It must be noted that, despite ostensibly 

collecting a broad range of participants, almost every participant in this study was 

recruited from within an institution of higher learning, and within a department 

dedicated to Geography. Even the least expert participants represented in this study 

can be presumed to be more privileged in their education, spatial reasoning, and 

ability to use technology compared to much of the human population.
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4.4 User Preference

The closing questions on user preference showed clear differences among 

the eight map types. Kruskal-Wallis (a non-parametric version of ANOVA) found 

statistically significant differences between how users ranked the map types (p value 

= 2.2e-16). Table 4.11 provides a summary of the Likert scores.

Using mean scores, the bivariate choropleth was judged to be the most 

visually appealing (mean score 5.7, with 7 being most appealing) and most usual 

(mean score 2.5, with 1 being most usual). The choropleth with graduated symbols 

Table 4.11. Likert scale results: mean and standard deviation for participants' scoring of the  
map types along various scales (all running 1-7).
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was judged to be the easiest to read (mean score 5.4, with 7 being easiest to read), 

a sentiment that also held true when asked about ease of reading individual 

distributions of the attributes (mean score 5.6) and determining the closeness of 

their relationship (mean score 5.5). The most favorably recieved maps, based on the 

'bad overall/good overall' ranking, were the choropleth with graduated symbols 

(mean score 5.3) and the bivariate choropleth (mean score 5.1). Using the same 

scale, the least favorably recieved maps were the shaded texture (mean score 2.6) 

and spoke glyph (mean score 2.7).

There is little variation in how participants responded to the questions within 

each map type: that is, if a participant liked or disliked a map type, they would rate it 

similarly high or low regardless of the question asked. This fact is of particular 

interest with regards to the "shows individual distributions clearly" and "I can judge 

the closeness of the relationship" scales. Theoretically, based on knowledge of 

selective attention, the integral combinations would perform better at showing 

relationships than individual distributions, and vice-versa for separable 

combinations. In these scores, the participants reported little difference in how 

successfully these map types represent the individual attributes versus the 

relationship between those attributes. This may be further evidence that participants 

were unable to notice or capitalize on the emergent visual dimensions that exist 

within the maps, as mentioned in Section 4.3 above.
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Figure 4.6. Histograms of user responses to the 'bad overall/good overall' Likert scale. Well-
recieved map types would have most responses to the right end of the scale.
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Chapter 5: Conclusions

5.1 Summary

Despite being common in cartography, bivariate thematic maps are poorly 

understood; few academic articles examine them empirically, cartography textbooks 

and cirricula do not discuss them systematically, and in general there is little 

understanding of how to design bivariate symbol sets that effectively portray a given 

set of information.

This research sought to assist in the resolution of these issues in two ways. 

First, to better understand how bivariate maps 'work' by exploring the solution space 

for bivariate maps, understanding their unique perceptual characteristics (via the 

theory of selective attention), and examining the nature of how these various 

solutions encode relational information about the mapped phenomena. Secondly, 

this research applied those insights to a controlled study designed to identify various 

potential influences on bivariate map reading: the type of bivariate map used 

(including the selective attentive characteristics of that map type), the tasks in which 

the reader performs using the map, and the expertise of the map reader. 

5.2 Experimental Findings

The controlled experiment performed in this study is an attempt to adapt the 

methodology of Selective Attention research (namely, speeded classification) with 

methodologies common in Thematic Cartography research (performance testing). 
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Results indicate that while participants were ultimately able to successfully extract 

information from all of the eight different map types, there were meaningful 

differences in how well the tested map types supported various forms of information 

retrieval. 

Despite hesitations about the utility of bivariate maps (described in Section 

1.2), the participants in this survey were consistently successful in accurately 

answering the questions presented to them (overall accuracy rate was 96.1%). 

There were also several map types that users rated largely positively in their 

capacity to read and understand the information on the map (based on the Likert 

scores in Section 4.4). Essentially, although some map types were more intuitive to 

read than others (according to reaction time, with the spoke glyph proving the least 

intuitive), no map was too visually complex to be understood. It should be 

recognized that the structured, task-specific way participants interacted with the 

maps in this study may have influenced their impressions of the maps' utility. Task-

specific map reading engages different visual and cognitive activities than the 

unstructured, spontaneous kinds of map reading that is more likely to occur when 

people encounter maps in everyday life (Antes & Chang 1990). Nevertheless, the 

results of this study should dispel some hesitations about the utility of bivariate 

maps: when thoughtfully designed, bivariate maps are capable of being largely 

successful in their communication goals.

Selective Attention theory provided some insights into the performance of the 
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eight map types, but could not account for all results seen. There were statistically 

significant differences between selectivities in terms of their reaction times, but not in 

terms of accuracy rates. A given map type did not always perform identically to the 

other map type with the same selectivity; the disparities in performance between the 

configural solutions (bar chart and spoke glyph) provide a good example. Because 

of these intra-selectivity differences, it is challenging to draw broad conclusions 

about the four conditions of selectivity based on the findings of this study. Results 

that we would expect to see due to knowledge of perception did not always 

materialize; the best performance in the General Plus(+) task, for instance, was 

expected from the strong emergent dimensions of the integral map types, however 

the best performer in this task was the bar chart, a configural solution. The X and Y 

tasks were hypothesized to be best supported by the separable combinations, but 

this materialized in only one instance (the choropleth with graduated symbols, in the 

General Y task). Additionally, participants did not rate separable or integral 

combinations as better at portraying individual distributions versus relational 

information. The inability of selective attention theory to describe all of the 

experimental results suggest that task-based map reading has fundamental 

perceptual and cognitive differences from interacting with the same sorts of symbols 

in an abstracted speeded classification setting. Future studies examining selective 

attention in a Cartographic setting should be mindful of these differences.

The eight map types showed frequent variations in reaction times across task, 
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whether that be performing better than the other maps in one of the eight tasks 

(cataloged in Table 4.7), or particular map types showing variation in performance 

between Elementary and General level tasks within a given information axis (Table 

4.8). There were also statistically significant differences between the eight tasks in 

terms of their accuracy rates. Speaking broadly, variations in task performance 

across the map types were relatable to the unique perceptual properties of their 

specific visual cues. In one case, the spoke glyph, the lack of strong visual cues 

made it challenging for participants to retrieve information regardless of task. The 

other map types were generally successful in supporting the eight tasks overall, but 

showed differences in performance dependent on the information axis or the level of 

reading. The configural map types, for instance, demonstrated a good ability for 

viewers to extract information along the Minus(-) axis, but only when attending to 

individual symbols (Elementary tasks); when challenged to perform the same task at 

the General level, participants seemed unable to visually aggregate the symbols into 

a similarly intuitive cue. Variations in accuracy across the eight tasks had modest but 

statistically significant differences. It is possible that participants occasionally forgot 

which visual variable encoded which statistical attribute, leading to the greater 

number of errors in the X, Y, and Minus(-) tasks.

Performance across the different map types, in both accuracy and response 

time, did not significantly vary according to user expertise. It is possible that the 

expertise of the participants was not broad enough, with most being recruited from 
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within the same Geography Department. Alternatively, expertise in mapmaking and 

GIS may not provide the specific map literacy skills that would provide an advantage 

over laypersons in completing the specific information extraction tasks required in 

this study.

Finally, several of the experimental results indicate that although bivariate 

maps can provide sensible visual cues to higher-level information, these cues were 

not consistently noticed or leveraged by the map viewers. Specifically, the fact that 

1) reaction time results among the Plus(+) and Minus(-) tasks did not frequently vary 

based on selectivity, 2) Experts and novices did not vary significantly in their reaction 

times, and 3) participants did not report a difference between separable/integral 

combinations as far as showing individual distributions vs relational information. 

Selective attention is helpful in examining the limits of human perception. However, 

in this particular experiment the limitations of the map appeared to be founded not 

on perception, but cognition. It is possible that instructing map readers on how to 

extract higher-level (Plus[+] and Minus[-] axis) information from the map would be a 

powerful means to enhance bivariate map reading. Similar map literacy practices 

already exist; the contour lines in a topographic map, for instance, portray the 

steepness of a slope (by the closeness of the lines) and its aspect (by determining 

the angle perpendicular to the contour lines), but this information is not readily 

apparent to a viewer unfamiliar with contour lines as a form of terrain representation. 

While it is outside the scope of this writing to suggest specific means to enhance 
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bivariate map literacy, several options could be feasible. Map designers could place  

explanatory notes on the map itself, cueing readers to the existence of the map's 

emergent dimensions and how they relate to higher-level information within the 

graphic. Alternatively, techniques for bivariate map literacy could be provided in a 

classroom setting, incorporated into any educational material on mapmaking, spatial 

analysis, or visual literacy.

5.2 Concluding Design Considerations

As examined throughout Chapter 2, there are numerous design 

considerations for bivariate maps: an attempt to formally catalog these design 

considerations is below.

1) Characteristics of the Mapped Phenomenon: These include the phenomena's 

dimensionality (point, line, or polygon), level of measurement (categorical, ordinal, 

numerical), data format (vector or raster), and continuity/abruptness (per 

MacEachren & DiBiase, 1991). These characteristics guide which visual variables, 

symbol dimensionalities, and overall representation techniques will be appropriate 

for visually representing each set of attributes, identical to how they guide 

representation choices in the production of a univariate map. Tables 2.4 – 2.6, for 

instance, were scoped to solutions appropriate for numerical data enumerated to 

polygon features.

2) Conceptual Relationships Between the Phenomenon: Though not 
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acknowledged into the empirical study, the conceptual relationship between the 

mapped phenomenon are one way in which selectivity can inform symbolization 

choice. It is unknown if following these guidelines would result in an appreciably 

improved performance in map reading (at the very least, no such result was directly 

visible in this study), but they relate clearly to the perceptual models from selective 

attention, and similar guidelines have been offered by Nelson (1999; 2000).

• Separability may be preferred when the mapped attributes are two 

independent variables that have incongruous scales (for instance, crime rates 

in arrests per capita vs. median income in dollars, or temperature in degrees 

vs. precipitation in inches). If the two variables have congruous scales, a 

configural combination may be more appropriate (see below).

• Integrality may be prefered when the information encoded along the emergent 

dimension (generally the Plus(+) axis) is a meaningful data variable unto 

itself. A cartographer, for instance, may define 'affluence' as a combination of 

property value and educational attainment. An integral visual combination 

would salienty demonstrate that the emergent information item is a product of 

the combined influence of those two constituent attributes.

• Configurality may be preferred when the mapped attributes are two variables 

that do have congruous scales (for instance, corn export in bushels vs. wheat 

export in bushels, or HIV rates in males vs. HIV rates in females). The most 

defining feature of a configural combination is its emergent feature in the 
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Minus(-) axis when the two attributes are 'in agreement' (e.g., the perfect 

rectangle formed when the two halves of a bar chart share the same 

attribute). Using information with congruous scales ensures the visual  

'agreement' in the symbol represents a meaningful 'agreement' in the data 

attributes.

• Asymmetry may be preferred when one of the mapped attributes is more 

important to communicate than the other, or when the goal is to examine 

conditional relationships within the attributes (for instance, 'how does X vary 

when considering only the higher values of Y?'). Value-by-alpha maps, for 

instance, were initially described as a tool for election mapping, using 

transparency to downplay the visual impact of states with low populations 

(Roth, Woodruff, & Johnson, 2010). The ability to attend to changes in hue 

diminishes as transparency increases, and this asymmetric inhibition is used 

to meaningfully highlight and dehighlight features on the map.

3) Context-Specific Information Communication Goals: These refer to any 

possible information representation goals (i.e., tasks) that the cartographer desires 

to emphasize or de-emphasize within the context of a specific project. These goals 

will inform any number of design decisions within the map, such as map type, 

classification scheme, symbol scaling, sequential vs. divergent color ramps, legend 

design, redundant encoding, and many more. Broadly speaking, mapmakers should 

be cognizant of the sorts of emergent dimensions and features created by their 
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symbolizations (as preliminarily examined in Section 2.2.3), and how the strength, 

nature, and interactions of these visual cues might serve to direct viewers' attention 

within the map. The findings of the empirical study provide a few possible ways in 

which choice of map type can enhance information communication goals. Tables 4.6 

and 4.7 can serve as a reference as to which map types better support specific 

tasks. The General Minus(-) task, for instance, was better supported by the 

choropleth with graduated symbol and bivariate choropleth map, but poorly 

supported by the two configural map types (bar chart and spoke glyph).

5.3 Future Directions

This empirical study, drawing from theory of selective attention, assumed that 

the major challenges of reading a bivariate map were perceptual: that is, the visual 

variables interact with each other in such a way as to hinder information extraction 

from the map, and choice of map type (including its selectivity) could serve to 

minimize visual interference and maximize the intuitive representation of the 

information (or, at least, certain aspects of the information). As described in Section 

5.1, though, perceptual considerations did not account for all of the findings in the 

experiment: cognition appears to also be an important aspect of successful bivariate 

map reading. This was not anticipated in the experimental design, and should be 

considered as a limitation of the study. Other than the Likert scales, the information 

collected in the survey demonstrates very little about how the bivariate maps were 
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cognitively understood by the participants. Understanding the cognitive aspects of 

bivariate map reading provides an avenue for future research in bivariate Thematic 

Cartography. In order to understand why reaction times varied across task, for 

instance, it would have been beneficial to know the mental strategies the participants 

used to answer the questions. Did the participants begin by looking at the map, or at 

the question itself? How often, and in what contexts, did participants have to re-

check the legend? Did they answer the General-level questions by attending to 

individual map features, or by trying to visually aggregate them? There are several 

methods that could better investigate such cognitive-based questions, such as eye 

tracking, focus groups, "think-aloud" experiments (Pickle 2003), or by giving 

participants more open-ended information-seeking challenges (rather than the highly 

specific information retrieval tasks used in this study). 

Similarly, this writing attempted to identify and discuss the emergent 

dimensions and features of various bivariate map types; dimensions such as the 

'leftedness/rightedness' of a bar chart or split proportional symbol, or  the 

directionality (vertical/horizontal) of a rectangle map. The understanding of these 

various emergent visual dimensions is significantly less than the understanding of 

the more fundamental visual variables. Since these emergent dimensions do serve 

to encode information in a multivariate map, it would be enlightening to examine how 

these dimensions are percieved and their appropriateness for encoding different 

varieties of information.
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Glossary

Asymmetrical: A condition of selectivity marked by conditional interaction effects 
between the constituent visual variables. Asymmetry generally occurs when one 
visual variable acts as a stronger cue than the other.

Bar Chart: A bivariate map solution using bars of different sizes to represent each 
data variable. Bar charts are a configural solution using a size/size and point/point 
construction.

Baseline Task: A task within speeded classification where a participant is provided 
with one symbol and must locate an identical symbol within a series of others. The 
other symbols vary in only one visual dimension.

Bivariate Choropleth: A bivariate map solution using a two-dimensional color ramp. 
Bivariate choropleths are (generally) an integral solution using color/color and 
polygon/polygon construction.

Bivariate Map: A thematic map that visually represents two data variables.

Configural: A condition of selectivity marked by a relatively strong emergent feature, 
and a fair-to-good ability to visually attend to both the emergent properties of the 
symbol as well their constituent components. Configurality generally occurs when a 
symbol set employs two identical visual variables, such as bar charts, spoke glyphs, 
and split symbols.

Compare: A map-reading task wherein the user compares the values of two map 
features. Contrast with identify.

Condensation Task: A task within speeded classification where a participant is 
provided with one symbol and must locate an identical symbol within a series of 
others. The other symbols vary in two visual dimensions, and the viewer must 
successfully attend to both.

Condition of Selectivity: See Selectivity.

Choropleth with Graduated Symbols: A bivariate map solution consisting of 
proportional symbols overlaid onto a choropleth. Choropleths with graduated 
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symbols are a highly separable solution using a color/size and point/polygon 
construction.

Dimensionality: How many spatial dimensions a symbol is composed of: can be 
points (0D), lines (1D), polygons (2D), or volumes (3D).

Elementary Map Reading Task: A map reading task that requires attending to only 
one map feature at a time. Contrast with general map reading tasks.

Emergent Feature: A visual feature created by combining two particular visual 
variables within particular circumstances. Width and height, for instance, form the 
emergent feature of a perfect square, but only if the width and height are identical. 
This writing distinguishes between emergent features and emergent dimensions; 
emergent features are a binary (an individual symbol either exhibits the emergent 
feature, or it does not), whereas emergent features are orderable (individual symbols 
exhibit the emergent dimension to varying degrees).

Emergent Dimension: An attendable visual dimension created by the combined 
influence of two visual variables. Height and width, for instance, form the emergent 
dimension of area.

Filtering Task: A task within speeded classification where a participant is provided 
with one symbol and must locate an identical symbol within a series of others. The 
other symbols vary in two visual dimensions, and the viewer must attend to one 
while ignoring the confounding influence of the other.

General Map Reading Task: A map reading task that requires attending to multiple, 
usually contiguous, map features simultaneously. Contrast with elementary map 
reading tasks.

Identify: A map-reading task wherein the user identifies the value of a single map 
feature.

Information Axis: An axis onto which meaningful variations of data exist across. In 
a bivariate map, the key information axes are the two constituent data variables (X 
and Y), their positive association (Plus[+]), and their negative association (Minus[-]).

Integral: A condition of selectivity marked by reduced ability to attend to the 
constituent visual variables, instead focusing on their emergent dimension.
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Map Type: Competing forms of visdual data representation within thematic mapping.

Map Literacy: A generalized set of knowledge of how to accurately and efficiently 
retrieve information from a map.

Map Reading Tasks: see tasks

Minus(-) Axis: The data axis representing the negative association between the 
data variables: that is, whether X > Y or Y > X.

Multivariate: A map representing three or more data variables.

Orthogonal Information Axis: Data axes representing relational information about 
two constituent data variables (the plus(+) axis and minus(-) axis). 

Plus(+) Axis: The information axis representing the positive association between the 
data variables: that is, whether both are low or both are high.

Point/Point: A symbol construction wherein both visual variables are applied to a 
point symbol, with no statistical information encoded in the 'base map'.

Point/Polygon: A symbol construction wherein a point symbol is superimposed onto 
a polygon symbol. 

Polygon/Polygon: A symbol construction wherein visual variables are applied to the 
enumeration units within the 'base map'

Rectangle Map: A map type composed of symbols that vary by height and width. An 
integral solution using a height/width and point/point construction.

Region: In this study, region was an operational definition used to describe a 
collection of four contiguous units on the map.

Redundancy: The use of two or more visual variables to encode identical 
information.

Redundancy Task: A task within speeded classification where a participant is 
provided with one symbol and must locate an identical symbol within a series of 
others. The other symbols vary in two visual dimensions, but the viewer need only to 
attend to one of them.
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Selective Attention: 1) the human perceptual ability to, when presented with a 
complex visual scene, attend to specific visual channels while ignoring the others. 2) 
a subdiscipline of Psychology that investigates this phenomena.

Selectivity: Categories that broadly organize the selective attentive characteristics 
of a visual combination. The four selectivities treated here are separable, integral, 
configural, and asymmetrical.

Separable: A condition of selectivity marked by an ability to easily attend to the 
constituent visual variables, at the expense of creating strong emergent dimensions.

Shaded Cartogram: A map type composed of changes in size to the enumeration 
units, and applying different colors to those units. A separable solution using a 
size/value and polygon/polygon construction.

Speeded Classification: A methodology within Selective Attention research that 
asks participants to match a given symbol to an identical one within a set of several 
symbols, with varying forms of visual interference.

Spoke Glyph: A map type composed of bars that vary in orientation. A configural 
solution using an orientation/orientation and point/point construction.

Tasks: Specific activities the map reader can engage in to extract information from 
the map.

Thematic Map: Traditionally, a map designed for a one-off purpose. Now, usually 
used to refer to maps designed to convey statistical data.

Unit: In this study, unit was an operational definition used to describe a single 
enumeration unit on the map.

Univariate Map: A thematic map portraying a single data variable.

Value-by-alpha: A map type composed of varying the transparency (alpha) and hue 
of the map's enumeration units. An asymmetrical solution using a transparency/hue 
and polygon/polygon construction.

Visual Aggregration: A perceptual/cognitive process wherein the viewer must sum 
the influence of multiple visual features, and decide upon their overall, 
representative value.  Fundamental to general level map reading tasks.
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Visual Complexity: The amount of interfering graphical dimensions within a map.

Visual Variables: The low level graphical dimensions  within an image.

X: A data axis representing one of the base-level data variables on the map.

Y: A data axis representing one of the base-level data variables on the map.
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